ar X iv : m at h / 03 07 08 1 v 3 [ m at h . Q A ] 1 2 A pr 2 00 7 1 PROPped up graph cohomology
نویسندگان
چکیده
We consider graph complexes with a flow and compute their cohomol-ogy. More specifically, we prove that for a PROP generated by a Koszul dioperad, the corresponding graph complex gives a minimal model of the PROP. We also give another proof of the existence of a minimal model of the bialgebra PROP from [14]. These results are based on the useful notion of a 1 2 PROP introduced by Kontsevich in [9].
منابع مشابه
ar X iv : m at h / 02 08 11 9 v 3 [ m at h . A G ] 1 9 A ug 2 00 2 GEOMETRY OF THE TETRAHEDRON SPACE
Let X be the space of all labeled tetrahedra in P. In [1] we constructed a smooth symmetric compactification X̃ of X. In this article we show that the complement X̃ r X is a divisor with normal crossings, and we compute the cohomology ring H(X̃ ;Q).
متن کاملar X iv : m at h / 03 08 02 3 v 2 [ m at h . Q A ] 1 3 O ct 2 00 3 MONOMIAL HOPF ALGEBRAS
Let K be a field of characteristic 0 containing all roots of unity. We classified all the Hopf structures on monomial K-coalgebras, or, in dual version, on monomial K-algebras.
متن کاملar X iv : m at h / 06 08 39 5 v 1 [ m at h . Q A ] 1 5 A ug 2 00 6 CHARACTERISTIC CLASSES OF A ∞ - ALGEBRAS
A standard combinatorial construction, due to Kontsevich, associates to any A∞-algebra with an invariant inner product, an inhomogeneous class in the cohomology of the moduli spaces of Riemann surfaces with marked points. We describe an alternative version of this construction based on noncommutative geometry and use it to prove that homotopy equivalent algebras give rise to the same cohomology...
متن کاملar X iv : 0 80 4 . 34 08 v 1 [ m at h . A P ] 2 1 A pr 2 00 8 SMOOTHNESS OF LIPSCHITZ MINIMAL INTRINSIC GRAPHS IN HEISENBERG GROUPS
We prove that Lipschitz intrinsic graphs in the Heisenberg groups H , with n > 1, which are vanishing viscosity solutions of the minimal surface equation are smooth.
متن کاملar X iv : m at h / 07 03 67 2 v 1 [ m at h . A G ] 2 2 M ar 2 00 7 PIECEWISE POLYNOMIALS , MINKOWSKI WEIGHTS , AND LOCALIZATION ON TORIC VARIETIES
We use localization to describe the restriction map from equi-variant Chow cohomology to ordinary Chow cohomology for complete toric varieties in terms of piecewise polynomial functions and Minkowski weights. We compute examples showing that this map is not surjective in general, and that its kernel is not always generated in degree one. We prove a localization formula for mixed volumes of latt...
متن کامل